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| — Introduction : . . - - - _ where (6,,0,) describes the scattering direction and (05,4, @s,g) aNd (6, Ppis) refers respectively to the
B 3 Application of the Characteristic Basis Function Method : scattering forward direction and backscattering direction
We apply a powerful domain decomposition technique, known as the Characteristic Basis | | As well known, the VIEM is limited by its heavy computational burden, which scales as O[(3N)“]. | | ' Single incident direction/target orientation:
Function Method (CBFM), to the problem of EM scattering by complex-shaped particles, and | | To overcome this burden, we employ the CBFM which has been proven to be accurate and efficient " |
this, in the context of a 3D full-wave model based on the volume-integral equation formulation of | | when applied to large-scale EM problems, even when the computational resources are limited. e .
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hand side problem enhancement techniques !
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nd Tl Bl aln Avsga NS | the volume integral equation method . - e | B ARG P
. R (VIEM) with piecewise constant basis for each block 1 in order to generate a final reduced matrix of size K x K where K = Sum (S, S,, -~-o.cerwe. gyen for a single incident beam (for CBFM) /
T ags Oy fnctions P Sy)- This results in a substantial size-reduction of the MoM matrix and enables usto use of a | | "o o2 os  0s os 12 14 target orientation (for DDScat)
] U o _ L direct method for i1ts Inversion. N pyye The scattering properties of a spherical particle calculated
The model is applied here to pristine ice | | with the CBEM and Mie
e crystals and aggregate snow particles . ‘ | ' ——Q,,ddscat ETASCA=0.5
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Pristine crystals (a) simulated using the snowflake Frequencies of interest : i :> 3 2 2 107
algorithm [1] and aggregate snow particles (b) (35 - 380 GH2) / : : : M~ :
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Integral representation of the total electric field (EFIE) : it N {
Singular Value Decomposition (SVD) |
E(r) = E'(r) + (ko + V. ) f x@) G, ") Er') dr — # thresholding (% ¢,*103) FEEN DDScat : 232 min
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where E(7) is the field inside the scatterer, E*(7°) is the incident field, y(7') is the dielectric \ S CBEs for the block i
contrast at the location 7, k, is the wavenumber in air and G(7,7") is the free space Green’s / \ | storthe blocktl s 109} - - .
function. We rewrite the integral equation above as : @ HEr)
The scattering properties of an aggregate snow particle of effective radius a,=1.614 mm (max. dim. = 11.45 mm)
FE(T_”) — El(‘l_”) where = ! . (k(z) 4 VV-)[X(F,) G(T_‘,T_") dr' / Computation of Z¢ \ calculated using the MoM/CBFM-E and DDScat
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The particle is discretized into N cubic cells Q, of side ¢,  ‘n = 7 i 4s = 7= By storing and solving Dt g o o ZH s the scattering quantities (f =Qey OF Qsca OF Qps) TOF AT v ?
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Z i1s the 3N x 3N full matrix where F”(r) = {O' @ Qn} q 1. Diagonal representation 2. Use of the ACA to speed- 3. Multilevel scheme of .
representing the interactions between @ T n of the MBFs I up the generation of Z¢ I the CBFM DDScat : 3458 min
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Qn q=1 Qn We compute the extinction, absorption, scattering and back-scattering efficiency factors Q.. =
If m = n, in order to avoid singularities, Z;;Imn 1s computed using Hadamard regularization. Cex/ma?, Qs = Cabs/nz_lz, Qscat:CSth/naZ and Qka:(_Zka /7_ta2 as fung:tions of X = ka:27t_a/k, and
Then the integral on Q, is approximated by an integral on sphere of radius a,, = ¢, 3/3/(4m) | | compares the_ resu_lts with _those derlvec_i fro_m the Mie series (spherical particle) and with those
calculated using Discrete Dipole Approximation as coded in DDSCAT 7.1.
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